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Abstract—Community detection is a fundamental task in graph data mining. Most existing studies in contact networks, collaboration

networks, and social networks do not utilize the temporal information associated with edges for community detection. In this article, we

study a problem of finding stable communities in a temporal network, where each edge is associated with a timestamp. Our goal is to

identify the communities in a temporal network that are stable over time. To efficiently find the stable communities, we develop a new

community detection algorithm based on the density-based graph clustering framework. We also propose several carefully-designed

pruning techniques to significantly speed up the proposed algorithm. We conduct extensive experiments on four real-life temporal

networks to evaluate our algorithm. The results demonstrate the effectiveness and efficiency of the proposed algorithm.

Index Terms—Community detection, temporal networks, stable community, structural graph clustering, density-based clustering

Ç

1 INTRODUCTION

REAL-LIFE networks such as social networks, biological net-
works, and communication networks exhibit the property

of community structure [1]. Discovering communities in a net-
work is a fundamental graph data mining task which has
attractedmuch attention in recent years due to a large number
of applications [2], [3], [4], [5], [6], [7], [8], [9]. In applications
such as analysis of contact networks and scientific collabora-
tion networks, the links are typically associatedwith temporal
information. For example, in the contact network [10], [11],
each link (u; v; t) denotes a contact between two individuals u
and v at time t. In the collaboration network, each edge repre-
sents the relationship that two authors, u and v, coauthored a
paper at time t. Most existing community detection algo-
rithms such as [1], [2], [3], [4], [5], [6], [7] do not consider the
temporal information of the links, thus they may fail to dis-
cover some important temporal patterns such as the pattern
of stable community structure in the temporal network.

In this paper, we study the problem of detecting stable
community structures in the temporal network, where each
edge is associated with a timestamp. Our goal is to identify
a densely-connected community structure that is stable
over time. Such a stable community may be very useful for

many network analysis applications. For example, consider
an email communication network between staffs in a uni-
versity. A stable community may reveal a group of staffs
that come from the same department, because the staffs in
the same department are more likely to stably communicate
with one another. In a scientific collaboration network, a sta-
ble community may reflect a group of researchers that main-
tain long-term collaborations. Such a group of researchers
may be useful for the application of finding a stable team of
experts to complete a special research project.

The community detection problem in static networks has
been extensively studied in the literature, such as optimiza-
tion-based algorithms [1], [4], [5], [12], dense subgraphmining
(clique, quasi-clique) [13], [14] and some clique-relaxedmodel
[6], [7], [15]. Many of the existing community detection algo-
rithms [16] for those community models above focus mainly
on traditional graphs, thus they also cannot be directly used
for detecting stable communities in temporal graphs.

To find the stable communities, we develop a new commu-
nity detection algorithm for temporal graphs based on the
density-based graph clustering framework, since the density-
based graph clustering framework has shown to be very effi-
cient and effective for community detection applications [3],
[17], [18], comparing with the other community models. Note
that the traditional density-based graph clustering algo-
rithms [3], [17], [18], [19] cannot be directly applied to detect
stable communities, because all of them ignore the temporal
information of the edges. To solve our problem, we need to
integrate both the temporal information and the graph struc-
ture into the clustering procedure. The main contributions of
ourwork are summarized as follows.

New concepts and problems. We first introduce a new
concept, called �-stable similarity, to measure the stability of
structural similarity between two nodes in the temporal net-
work. Then, we propose a novel concept, called ðm; t; �Þ-stable
core, to characterize the stable core nodes of the clusters. A
node u is a ðm; t; �Þ-stable core if u has no less thanm neighbors

� H. Qin and Y. Yuan are with the Department of Computer Science,
Northeastern University, Shenyang, Liaoning 110004, China.
E-mail: qhc.neu@gmail.com, yuanye@mail.neu.edu.cn.

� R. Li and G. Wang are with the Department of Computer Science, Beijing
Institute of Technology, Beijing 100081, China.
E-mail: lironghuascut@gmail.com, wanggrbit@126.com.

� X. Huang is with the Department of Computer Science, Hong Kong Bap-
tist University, Hong Kong, China. E-mail: xinhuang@comp.hkbu.edu.hk.

� J. Yu is with the Department of Systems Engineering and Engineering
Management, The Chinese University of Hong Kong, Hong Kong, China.
E-mail: yu@se.cuhk.edu.hk.

Manuscript received 28 Dec. 2018; revised 15 Nov. 2019; accepted 20 Jan.
2020. Date of publication 18 Feb. 2020; date of current version 13 May 2022.
(Corresponding author: Guoren Wang.)
Recommended for acceptance by N. Liu.
Digital Object Identifier no. 10.1109/TBDATA.2020.2974849

IEEE TRANSACTIONS ON BIG DATA, VOL. 8, NO. 3, MAY/JUNE 2022 671

2332-7790 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 05:55:55 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/ 0000-0003-4364-0633
https://orcid.org/ 0000-0003-4364-0633
https://orcid.org/ 0000-0003-4364-0633
https://orcid.org/ 0000-0003-4364-0633
https://orcid.org/ 0000-0003-4364-0633
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
mailto:qhc.neu@gmail.com
mailto:yuanye@mail.neu.edu.cn
mailto:lironghuascut@gmail.com
mailto:wanggrbit@126.com
mailto:xinhuang@comp.hkbu.edu.hk
mailto:yu@se.cuhk.edu.hk


that are simultaneously similar to u in at least t snapshots of
the temporal graph. Based on these definitions, we formulate
the density-based clustering problem to detect stable commu-
nities in temporal graphs. To the best of our knowledge, this is
the first work to study the density-based clustering problem
on temporal graphs.

New algorithms. The main technical challenge in our
problem is to compute the ðm; t; �Þ-stable cores. By our defi-
nition, a basic approach to determine a ðm; t; �Þ-stable core
needs to perform frequent pattern mining over all the snap-
shots of the temporal graph, thus it is very costly for large
temporal graphs (it needs at least OðCt

T Þ, T is the number of
timestamps). To improve the efficiency of the basic algo-
rithm, we propose two relaxed definitions of the ðm; t; �Þ-sta-
ble core, called weak and strong core respectively. Instead
of directly computing stable cores, our algorithm first makes
use of the weak and strong cores to significantly prune the
unpromising nodes, and then identifies the stable cores
from the remaining nodes. Unlike the ðm; t; �Þ-stable core,
both the weak and strong core can be computed very
quickly. Specifically, we develop two efficient algorithms
with several carefully-designed pruning techniques to com-
pute the weak and strong cores respectively. Those pruning
techniques can reduce the graph into a much smaller size
and they can get exact stable cores quickly.

Experimental. We conduct comprehensive experiments
using four real-life temporal graphs to evaluate the proposed
algorithm. The results indicate that our algorithm signifi-
cantly outperforms the baselines in terms of the clustering
quality. The results also demonstrate the high efficiency of
the proposed algorithm. For example, our algorithm only
takes 100 seconds to find stable communities in a large-scale
temporal graph with 1,729,816 nodes and 12,007,380 edges
under most parameter settings. In addition, we also perform
a case study on the DBLP dataset. The results demonstrate
that our approach can identify many meaningful and inter-
esting stable communities that cannot be found by the
othermethods.

Organization. Section 2 introduces the model of stable
communities and formulates our problem. The core reduc-
tion techniques for mining the stable communities are pro-
posed in Section 3. Experimental studies are presented in
Section 4. We review the related work in Section 5, and con-
clude this work in Section 6.

2 PRELIMINARIES

Let G ¼ ðV; EÞ be an undirected temporal graph, where V
and E denote the set of nodes and the set of temporal edges
respectively. Let n ¼ jVj and m ¼ jEj be the number of

nodes and temporal edges respectively. Each temporal edge
e 2 E is a triplet ðu; v; tÞ, where u; v are nodes in V, and t is
the interaction time between u and v. We assume that t is an
integer, because the timestamp is an integer in practice. For
a temporal graph G, the de-temporal graph of G is referred to
as G ¼ ðV;EÞ by ignoring all the timestamps associated
with the temporal edges. Clearly, we have V ¼ V.

By sorting the temporal edges in a chronological order, the
temporal graph can be represented as a link stream [20]. The
widely-used approach to extract interesting patterns from a
temporal graph relies on series of snapshots [20], [21], [22].
Considering an arithmetic time sequence ft0; t1; t2 . . . tT g sat-
isfying ti � ti�1 is a constant for each integer i, let Ei be a set of
edges that are extracted from E in the time interval ðti�1; ti�.
The ith snapshot of G is a temporal subgraph Gi ¼ ðV; EiÞ. Let
T be the number of snapshots of G, and we have T � m.
Let Gi ¼ ðV;EiÞ be the de-temporal graph of the ith snapshot
Gi ¼ ðV; EiÞ. In the experiments, we set ti � ti�1 to a default
value of 1 month/year which means that every snapshot
contains all the temporal edges in a one month/year length
sliding window. Fig. 1a illustrates a temporal graph with 9
temporal edges and 8 timestamps. While i ¼ 4, snapshot G4
contains two edges ðv2; v4Þ and ðv3; v4Þ, which is shown at
Fig. 1b. Fig. 1c shows the de-temporal graph of G by generating
a static graph with ignoring all timestamps. For convenient,
Table 1 lists the main symbols used in this paper and their
definitions.

Based on the snapshots and the concepts in the density-
based graph clustering framework (SCAN) [3], we introduce
several useful definitions for the stable cluster mining prob-
lem on temporal graphs. At first, we can use structural simi-
larity [3] to measure similarity of two nodes in the graph. It
can capture the similarity of two nodes by computing the
number of common neighbor between them. Besides, other
similar definitions, such as Jaccard similarity, can also mea-
sure the similarity of them. However, those methods need to
compute the set-intersection of neighbors of the considering
two nodes. So, different definitions for the similarity of nodes
make little difference to the acceleration ratio of the proposed
optimized algorithms below. Without loss of generality, we
use the structural similarity following the standard SCAN

Fig. 1. Illustration of the key definitions of temporal graph.

TABLE 1
Main Symbols

Symbols Definitions

G ¼ ðV; EÞ the undirected temporal graph
E temporal edges, set of triplet ðu; v; tÞ
G ¼ ðV;EÞ de-temporal graph of G
NðuÞ (or NGðuÞ) neighborhood of node u in G
Gi ¼ ðV; EiÞ snapshot with

Ei ¼ fðu; v; tÞjt 2 ðti�1; ti�g
Gi de-temporal graph of Gi
NiðuÞ neighborhood of node u in Gi

siðu; vÞ structural similarity between nodes u
and v in Gi

StableCore (m; t; �)-stable core (Definition 1)
S�ðu; vÞ �-stable similarity (Definition 2)
(t; �)-connected edge edge ðu; vÞ satisfying S�ðu; vÞ � t
Nðt;�ÞðuÞ node set of ðt; �Þ-connectedneighbors ofu
WeakCore weak core model (Definition 6)
StrongCore strong core model (Definition 7)
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algorithm to measure the similarity of two nodes. Therefore,
the structural similarity between two nodes of an edge ðu; vÞ
inGi is defined as

siðu; vÞ ,
jNi½u� \Ni½v�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNi½u�j � jNi½v�j

p ; (1)

whereNiðuÞ ¼ fvjðu; vÞ 2 Eig is neighborhood of u inGi and
Ni½u� ¼ NiðuÞ [ fug. We define siðu; vÞ ¼ 0 if ðu; vÞ =2 Gi. The
set of �-neighbors of v in Gi is defined as N�

i ðvÞ ,
fu 2 NiðvÞjsiðu; vÞ � �g.

By following the SCAN framework, we propose a new
definition called (m; t; �)-stable core to characterize a stable
core node of the cluster in a temporal network.

Definition 1 ((m; t; �)-stable core). A node u 2 V is called a
(m; t; �)-stable core if there exists a set of neighbors ~NðuÞ �
NðuÞ of u that satisfies the following conditions: (i) j ~NðuÞj � m;
(ii) there are at least t snapshots fGj1 ; . . . ;Gjlg (l � t) contain-
ing the star-shaped structure formed by ~NðuÞ [ fug; and (iii) in
each snapshot Gjk (1 � k � l), sjkðu; vÞ � � for any v 2 ~NðuÞ.

To find the stable core, we can consider some nodes
which are stably similar to node u in the temporal graphs.
Based on Eq. (1), we propose a definition of stable similarity
to measure whether two nodes are stably similar in the tem-
poral graphs.

Definition 2 (�-stable similarity). For nodes u and v in G, the
�-stable similarity S�ðu; vÞ is defined by

S�ðu; vÞ ¼
XT

i¼1
Iðsiðu; vÞ > �Þ; (2)

where I is an indicator function which equals 1 if siðu; vÞ > �,
and 0 otherwise.

Intuitively, if two nodes are stably similar, they should be
structurally similar in many snapshots. Based on this intui-
tion, we define the ðt; �Þ-connected edge as follows.

Definition 3 ((t; �)-connected edge). For each edge ðu; vÞ in
the de-temporal graph G, if S�ðu; vÞ � t, the edge ðu; vÞ is
called a ðt; �Þ-connected edge.

By Definition 3, the set of ðt; �Þ-connected neighbors of u
inG is defined asNðt;�ÞðuÞ , fv 2 NðuÞjS�ðu; vÞ � tg. Clearly,
a node v 2 Nðt;�ÞðuÞ is a stably similar neighbor of u. It is
worth mentioning that the ðt; �Þ-connected neighbor is
defined on the de-temporal graph G, while the �-neighbor
is defined on the de-temporal snapshot Gi.

By Definition 1, a (m; t; �)-stable core u has at least m

neighbors such that they are simultaneously similar to u in
at least t snapshots, indicating that u has no less than m sta-
bly similar neighbors. If two nodes are reachable through a
series of (m; t; �)-stable cores, they should also be similar to
each other. Based on this, we define the structural reachabil-
ity between two nodes as follows.

Definition 4 (structure-reachable). A node v is structure-
reachable from u if there is a sequence of nodes v1; v2; . . . ; vl 2
V ðl � 2Þ such that: (i) v1 ¼ u, vl ¼ v; (ii) v1; v2; . . . ; vl�1 are
(m; t; �)-stable cores; and (iii) ðvi; viþ1Þ is a (t; �)-connected edge
for each 1 � i � l� 1.

Intuitively, all nodes in a stable cluster should be struc-
ture-reachable from each other. Based on this intuition, we
define a stable cluster as follows.

Definition 5 ((m; t; �)-stable cluster). A set of nodes C � V
is called a stable cluster if the following conditions holds.

(i) Maximality. For each (m; t; �)-stable core u 2 C, all
nodes that are structure-reachable from u must be con-
tained in C;

(ii) Connectivity. For any two nodes v1; v2 2 C, there is a

(m; t; �)-stable core u 2 C such that both v1 and v2 are
structure-reachable from u.

By Definition 5, we can obtain a (m; t; �)-stable cluster C
by merging all the nodes that are structure-reachable from
the (m; t; �)-stable cores in C.

Note that, Definition 5 is a relax model to characterize
the stable communities in a temporal network. (i) It
relaxes the exist time of some nodes in the stable cluster.
Considering a (3, 3, 0.6)-stable cores c1 in a temporal col-
laboration network. In an extreme case, suppose nodes v1,
v2 and v3 are simultaneously similar to c1 in snapshots t1,
t2, and t3 and nodes v4, v5 and v6 are simultaneously simi-
lar to c1 in snapshots t4, t5, and t6. This may be the case
that professor c1 moves to another place and has a new
group of coauthors. According to Definition 5, all nodes
will be assigned to the same stable cluster. However,
ðv1; v2; v3Þ and ðv4; v5; v6Þ may not be in the same stable
community. Otherwise, if we change the definition to dis-
tinguish those nodes which are clustered in different
time, we will perform several more frequent pattern
minings (each one need OðCt

T Þ time) and get much more
overlap clusters. Those will result in much additional
computation time and new problem of choosing the over-
lap clusters. So, we choose the current relaxed definition,
results of four evaluation metrics and case studies in
Section 4 confirm the effectiveness of our model. (ii) It
relaxes the order of the exist timestamps of stable core. If
we consider order of the snapshots in Definition 1, condi-
tion 2 can be changed into that there are at least t contin-
uous snapshots containing the star-shaped structure.
Obviously, one core stratifies condition 1, 3 in Definition 1
and exists at {1, 2, 4, 5, 6} time will not be a stable core
with t ¼ 5 because the exist time is not continuous. How-
ever, we choose a relaxed version for the ”stable” prop-
erty. Following our definition, if one core exists at {1, 2, 4,
5, 6} time, it can be treated to be stable. Clearly, our
current Definition 1 is more reasonable.

Problem Formulation. Given a temporal graph G and
parameters m; t and �, the stable community mining prob-
lem is to identify all the (m; t; �)-stable clusters in G.

Below, we make use of an example to illustrate the above
key definitions.

Example 1. Fig. 2 shows a temporal graph, it can be repre-
sented by an attributed graph in which each edge has a
vector of timestamps. For example, edge (v1; v2) has a vec-
tor of [2,3,4], which means that this edge exists at snap-
shots of G2;G3;G4. Also, edge (v1; v2) will be in the de-
temporal graph G2; G3; G4. If we take all the edges which
contain a timestamp t into consideration, the de-temporal
graph Gt of tth snapshot will be formed.
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Fig. 3a shows the de-temporal graph G1 of snapshot G1.
The number on each edge is the structural similarity between
two nodes of the edge. By definition, N1½v3� ¼ fv1; v2;
v4; v5; v3g, N1½v1� ¼ fv3; v1g, N1½v2� ¼ fv3; v2g, N1½v4� ¼ fv3;
v4g, N1½v5� ¼ fv3; v5g, so s1ðv1; v3Þ ¼ s1ðv2; v3Þ ¼ s1ðv4; v3Þ ¼
s1ðv5; v3Þ ¼ 2=

ffiffiffiffiffi
10
p

	 0:63. We can also calculate the struc-
tural similarity of G2 to G7 in Figs. 3b, 3c, 3d, 3e, 3f, and 3g
which are the de-temporal graph of G at time 2 to 7
respectively.

Considering the de-temporal graph G1; G2; G3 from
Figs. 3a, 3b, and 3c, we can find that the ð3; 0:6Þ-con-
nected edges are edge (v1; v3), (v2; v3), (v4; v3). It’s easy to
derive that those edges exist in three timestamps and the
0.6-stable similarity of them are larger than 3. Further-
more, we can find that node v3 is a (3,3,0.6)-stable core
since it has no less than three 0.6-neighbors in time-
stamps [1,2,3]. But v3 is not a (3,3,0.7)-stable core, since
v3 has no 0.7-neighbors in G1. By Definition 5, we can
find the (3,3,0.6)-stable cluster up-to-now is {v3; v1; v2; v4},
since v3 is a (3,3,0.6)-stable core and {v1; v2; v4} are all
structure-reachable to v3 (only edge (v1; v3), (v2; v3),
(v4; v3) are ð3; 0:6Þ-connected edges).

Challenges. Unlike the traditional density-based graph
clustering problem [3], [18], the challenge in our problem is
to compute the (m; t; �)-stable cores. This is because we need
to seek a frequent star-shaped structure over T snapshots to
identify a stable core (see Definition 1), which is very expen-
sive in practice. Specifically, to determine whether u is a
(m; t; �)-stable core or not, a basic algorithm is to compute
the set of �-neighbors of u (i.e., N�

i ðuÞ) in each snapshot.
Then, for each snapshot, we treat N�

i ðuÞ as a transaction,
and then invoke any existing maximal frequent pattern min-
ing algorithm [23] with support threshold t to find all maxi-
mal frequent patterns. If there is a maximal frequent pattern
with cardinality no less than m, the node u is a (m; t; �)-stable
core by Definition 1. To identify all the stable cores, we have
to invoke such a basic algorithm n times, which is very
costly. To tackle this challenge, we will develop several
powerful punning techniques to efficiently compute the sta-
ble cores.

3 THE PROPOSED ALGORITHMS

In this section, we first introduce a basic clustering frame-
work to solve our problem by adapting the state-of-the-art
density-based graph clustering framework (PSCAN) [18].
Then, we develop an improved algorithm with several
novel pruning techniques to compute the (m; t; �)-stable
clusters efficiently. The striking features of our algorithm
are twofold: (i) it can avoid repeated �-stable similarity com-
putation, and (ii) it significantly reduces unnecessary com-
putation for determining (m; t; �)-stable cores.

3.1 The Basic Clustering Framework

Similar to the PSCAN framework, our clustering framework
comprises two steps. In the first step, the algorithm groups
the (m; t; �)-stable cores, and then in the second step, it clusters
non-core nodes. The details of our framework, TSCAN-B
(Temporal SCAN-Basic), is shown inAlgorithm 1.

Algorithm 1 first initializes an empty graph Gc to main-
tain the computed stable cores and connected edges
(line 2). Then, for each node u 2 V , the algorithm deter-
mines whether it is a stable core (lines 3-4). As discussed
in Section 2, we can make use of any maximal frequent
pattern mining algorithm [23] to identify the stable cores.
If u is a stable core, the algorithm adds it into Gc and tra-
verses its neighbors. For each ðt; �Þ-connected neighbor v
of u (line 9), if v is also a stable core (line 10), the algorithm
inserts v and an edge ðu; vÞ into Gc (line 11), which means
that u and v will be grouped together. After exploring all
nodes, the algorithm computes the connected components
in Gc (line 13), and assigns the non-core nodes to their cor-
responding stable clusters using a similar method pro-
posed in [18] (line 14). In Algorithm 1, we can compute the
�-stable similarity S�ðu; vÞ by Definition 2 (lines 16-26).
Clearly, jNiðuÞj and jNiðvÞj are easy to get and they can be
stored as constants in the structure of the temporal net-
work (similar to adjacency list in the static graph). We can
iterate {NiðuÞ + NiðvÞ} by node w and use a HashSet to
store the considering node w. The value HashSet:w will be
increased by 1 if it has been existed (lines 19-22). Next,
jNiðuÞj \ jNiðvÞj will be the number of w satisfying that
HashSet:w > 0 (line 23). The time complexity of the whole
process is OðmÞ since it only needs constant time to check
whether HashSet:hasðwÞ (line 21). The algorithm termi-
nates early if S�ðu; vÞ � t (line 26). Note that the algorithm
also keeps all the computed �-stable similarity scores
(S�ðu; vÞ) in the main memory to avoid redundant compu-
tation (lines 7-8). The space overhead to store all those
�-stable similarities is bounded by the number of edges in
the de-temporal graph G. The correctness of our algorithm
can be easily derived using a similar argument as shown
in [18].

Fig. 3. De-temopral graph in each timestamp.

Fig. 2. Toy example of a temporal graph.
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Algorithm 1. TSCAN-B ðG;m; t; �Þ
Input: Temporal graph G ¼ ðV; EÞ, parameters m; t; �.
Output: The set of (m; t; �)-stable clusters C

1 Let G ¼ ðV;EÞ be the de-temporal graph of G;
2 Initialize Gc ¼ ðf;fÞ as an empty graph;
3 for each node u 2 V do
4 if isStableCoreðuÞ then
5 Add u into Gc;
6 for each unvisited node v 2 NðuÞ do
7 if S�ðu; vÞ has not been computed then
8 Compute S�ðu; vÞ and store it;
9 if S�ðu; vÞ � t then
10 if isStableCoreðvÞ then
11 Add node v and edge ðu; vÞ into Gc;
12 Mark u as a visited node;
13 C the set of connected components in Gc;
14 C  fC [u2C Nðt;�ÞðuÞjC 2 Cg; // cluster non-core nodes
15 return C;
16 Procedure Compute S�ðu; vÞ
17 S�ðu; vÞ  0;
18 for i 1 : T do
19 HashSet ;;
20 for node w in {NiðuÞ [NiðvÞ} do
21 ifHashSet:hasðwÞ thenHashSet:wþþ;
22 elseHashSet:w 0;
23 jNiðuÞj \ jNiðvÞj  #w satisfyingHashSet:w > 0;
24 if there is an temporal edge ðu; v; tÞ such that t 2 ðti�1; ti� then
25 if siðu; vÞ � � then S�ðu; vÞ  S�ðu; vÞ þ 1;
26 if S�ðu; vÞ � t then break;
27 return S�ðu; vÞ;

Note that the main difference between Algorithm 1 and
PSCAN [18] is that our algorithm relies on computing �-sta-
ble similarities and (m; t; �)-stable cores, while PSCAN is to
calculate traditional structural similarities and cores. As dis-
cussed in Section 2, the computation of (m; t; �)-stable cores
are quite nontrivial, since it needs to compute a frequent
star-shaped structure over T snapshots. Below, we develop
a novel algorithm to efficiently compute the stable cores.

3.2 Efficient Stable Core Computation

To speed up the stable core computation, here we propose
two novel pruning techniques to quickly prune the unquali-
fied nodes that are definitely not stable cores.

3.2.1 The Weak Core Pruning

By Definition 1, if u is a ðm; t; �Þ-stable core, there is a fre-
quent star T rooted at u such that the nodes u and v for each
edge ðu; vÞ 2 T are structurally similar in no less than t

snapshots. That is to say, each edge ðu; vÞ 2 T is a ðt; �Þ-con-
nected edge by Definition 3. Since T has m edges by Defini-
tion 1, a ðm; t; �Þ-stable core has at least m ðt; �Þ-connected
neighbors. As a result, we can first check a node u whether
it has m ðt; �Þ-connected neighbors. If that is the case, u is a
candidate for a ðm; t; �Þ-stable core, otherwise it is definitely
not a ðm; t; �Þ-stable core. More formally, we define a node u
as a weak core if jNt;�ðuÞj � m.

Definition 6 (weak core). Given a temporal graph G and
parameters t; �;m, node u is a weak core if jNt;�ðuÞj � m.

Lemma 1. Any ðm; t; �Þ-stable core must be a weak core.

Proof 1. The proof can be easily obtained by definitions,
thus we omit it for brevity. tu
Based on Lemma 1, we can first identify all the weak

cores in G, and then verify whether they are stable cores by
traditional maximal frequent pattern mining algorithms.
The remaining question is how can we efficiently compute
the weak cores? A naive approach is to compute jNt;�ðuÞj to
determine whether u is a weak core. This naive approach,
however, is inefficient, since it needs to compute the �-stable
similarities between u and every neighbor of u. Moreover, it
may incur redundant similarity computation between dif-
ferent nodes. To tackle these limitations, we propose a new
algorithm to compute the weak core efficiently. The key
idea of our algorithm is to maintain lower and upper
bounds of jNt;�ðuÞj for each node u. If the lower bound of
jNt;�ðuÞj for u is no less than m, u must be a weak core. Also,
if its upper bound is smaller than m, u is not a weak core,
and thus can be pruned. The detailed description is shown
in Algorithm 2.

Algorithm 2.WeakCore ðG;m; t; �Þ
1 Let G ¼ ðV;EÞ be the de-temporal graph of G;
2 Initialize the set of weak coresWC ¼ ;;
3 for each node u 2 V do
4 cdðuÞ  0; cdðuÞ  jNðuÞj;
5 for each node u 2 V do
6 if cdðuÞ < m and cdðuÞ � m then
7 for each node v 2 NðuÞ do
8 if S�ðu; vÞ has not been computed then
9 Compute S�ðu; vÞ and store it;
10 if S�ðu; vÞ � t then
11 cdðuÞ  cdðuÞ þ 1; cdðvÞ  cdðvÞ þ 1;
12 else
13 cdðuÞ  cdðuÞ � 1; cdðvÞ  cdðvÞ � 1;

14 if cdðuÞ � m or cdðuÞ < m then break;
15 if cdðuÞ � m then add u intoWC;
16 returnWC;

In Algorithm 2, cdðuÞ denotes the number of the computed
ðt; �Þ-connected neighbor of u, while cdðuÞ is an upper bound
of jNt;�ðuÞj. Initially, we set cdðuÞ ¼ 0 and cdðuÞ ¼ jNðuÞj for
each u 2 V (lines 3-4). Clearly, if cdðuÞ � m, u is a weak core;
and if cdðuÞ < m, umust not be a weak core. For each node u
with cdðuÞ < m and cdðuÞ � m, the algorithm computes all
the �-stable similarities between u and its neighbors and
updates cdðuÞ and cdðuÞ (lines 6-13). If S�ðu; vÞ � t, both
cdðuÞ and cdðvÞ increase by 1, otherwise both cdðuÞ and cdðvÞ
decrease by 1 (lines 10-13). The similarity computation proce-
dure can terminate early if cdðuÞ � m and cdðuÞ < m (line 14).
Note that Algorithm 2 not only prunes unnecessary similarity
computation by the early termination rule (line 14), but it can
also avoid repeated similarity computation by keeping all
computed �-stable similarities in themainmemory.

Example 2. We show the process of finding the weak core
in the temporal graph of Fig. 2 with (m ¼ 3; t ¼ 3; � ¼ 0:7).
The algorithm first initializes the upper bound cdðuÞ to be
the degree in the de-temporal graph G. Then, we enumer-
ate the nodes in the de-temporal graph to check whether
they have no less than three ð3; 0:7Þ-connected neighbors.
We can find that only v7 has less than 3 neighbors in the
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de-temporal graph, and it will not be taken into consider-
ation. Subsequently, we compute the S�ðu; vÞ on demand.
Once a node already has three ð3; 0:7Þ-connected neigh-
bors, it will be added into the weak core set.

Fig. 4a shows the weak core in the temporal graph of Fig. 2
with (m ¼ 3; t ¼ 3; � ¼ 0:7). The enlarged points are weak
cores and all the edges are ð3; 0:7Þ-connected edges. The vec-
tor on each edge is the timestamps inwhich the structural sim-
ilarity of two nodes are larger than 0.7. It can be seen that in
Fig. 4a the weak cores are fv1; v2; v3; v4; v6; v8g and if � raises to
0.75 in Fig. 4b, the weak core has only one node fv4g. Hence in
a large temporal social network, the graph will be reduced by
theweak core pruning rule with proper parameter settings.

3.2.2 The Strong Core Pruning

To further prune the unpromising nodes, we propose a
stronger pruning rule called strong core pruning. A node u
is a strong core if it is a weak core satisfying ½

P
i¼1 I

ðjN�
i ðuÞj � mÞ� � t.

Definition 7 (strong core). Given a temporal graph G and
parameters t; �;m, a node u is a strong core if jNt;�ðuÞj � m

and ½
P

i¼1 IðjN�
i ðuÞj � mÞ� � t.

The following lemma shows that any stable core is also a
strong core.

Lemma 2. Any ðm; t; �Þ-stable core must be a strong core.

Proof 2. For any ðm; t; �Þ-stable core u, u is a weak core, thus
we have jNt;�ðuÞj � m. By Definition 1, there exists a star T
rooted at u such that u and v are structurally similar for any
ðu; vÞ 2 T in at least t snapshots. Since jT j � mþ 1, there
exist no less than t snapshots, and in each of them the num-
ber of u’s �-neighbors is no smaller than m. As a result, we
have ½

P
i¼1 IðjN�

i ðuÞj � mÞ� � t. So, any ðm; t; �Þ-stable core
must be a strong core. tu

To compute the strong cores, we first identify all the weak
cores by invoking Algorithm 2, since all strong cores must be
contained in the set of weak cores. Then, for eachweak core u,
we verify whether ½

P
i¼1 IðjN�

i ðuÞj � mÞ� � t holds. To effi-

ciently implement this algorithm, we can maintain lower and
upper bounds of ½

P
i¼1 IðjN�

i ðuÞj � mÞ� for each weak core u.

Initially, we set ½
P

i¼1 IðjNiðuÞj � mÞ� as an upper bound for

½
P

i¼1 IðjN�
i ðuÞj � mÞ�, because the number of neighbors of u

is no less than the number of �-neighbors in the same snap-
shot. The detailed implementation of our algorithm is shown
inAlgorithm 3.

In Algorithm 3, csðuÞ denotes the number of considered
snapshots in which u has no less than m �-neighbors. Ini-
tially, csðuÞ ¼ 0, and csðuÞ ¼ ½

P
i¼1 IðjN�

i ðuÞj � mÞ� if all

the snapshots are considered. csðuÞ is an upper bound of
½
P

i¼1 IðjN�
i ðuÞj � mÞ� for u, and it is initialized by ½

P
i¼1 I

ðjNiðuÞj � mÞ� (lines 3-8). For each snapshot, Algorithm 3
alsomakes use of a similar lower and upper bounding trick to
compute jN�

i ðuÞj. Specifically, for the ith snapshot, sdiðuÞ
denotes the number of computed �-neighbors of u in the ith
snapshot, and sdiðuÞ is the upper bound of jN�

i ðuÞj which is
initialized by jNiðuÞj (line 6-8). The algorithm progressively
updates csðuÞ and csðuÞ (lines 20-22). If csðuÞ � t or
csðuÞ < t, the algorithm can terminate early (line 28). Simi-
larly, if sdiðuÞ � m or sdiðuÞ < m, the algorithm is also able to
terminate the computation of jN�

i ðuÞj (lines 26-27). Note that
the algorithm maintains all the computed siðu; vÞ in the main
memory to avoid redundant computation (lines 14-15). Since
the number of weak cores is typically much smaller than n,
the total space overhead to store all the computed siðu; vÞ is
also very small. In our algorithm, it is sufficient to store a bool-
ean variable to denote whether siðu; vÞ � �. Since the number
of weak cores is typically much smaller than n, the total space
overhead to store all such boolean variables can be ignored.

Algorithm 3. StrongCore ðG;m; t; �Þ
1 WC WeakCore ðG;m; t; �Þ;
2 Initialize the set of strong cores SC ;;
3 for each node u 2WC do
4 csðuÞ  0; csðuÞ  0;
5 for i 1 : T do
6 sdiðuÞ  0; sdiðuÞ  0;
7 if jNiðuÞj � m then
8 csðuÞ  csðuÞ þ 1; sdiðuÞ  jNiðuÞj;
9 for each node u 2WC do
10 if csðuÞ < t and csðuÞ � t then
11 for i 1 : T do
12 if sdiðuÞ � m then
13 for each v 2 NiðuÞ do
14 if siðu; vÞ has not been computed then
15 Compute siðu; vÞ and store it;
16 if siðu; vÞ � � then
17 sdiðuÞ  sdiðuÞ þ 1;
18 else
19 sdiðuÞ  sdiðuÞ � 1;
20 if sdiðuÞ � m then
21 csðuÞ  csðuÞ þ 1;
22 if sdiðuÞ < m then
23 csðuÞ  csðuÞ � 1;
24 if v 2WC and sdiðvÞ � m then
25 Update sdiðvÞ, sdiðvÞ, csðvÞ, and csðvÞ as

lines 17-23;
26 if sdiðuÞ � m or sdiðuÞ < m then
27 goto line 11;
28 if csðuÞ � t or csðuÞ < t then
29 goto line 30;
30 if csðuÞ � t then add u into SC;
31 return SC;

Example 3. To find the strong cores, we first invoke
Algorithm 2 to find theWeakCore. In this case, we get the
weak core in Fig. 4a with (m ¼ 3; t ¼ 3; � ¼ 0:7). Then,
Algorithm 3 derives WeakCore to initialize csðuÞ and
sdiðuÞ. We can find that all the csðuÞ of fv1; v2; v4g are less
than 3 and they will be pruned first. Note that, csðv8Þ and

Fig. 4. WeakCore (m ¼ 3; t ¼ 3).
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sdðv8Þ are initialized as 3. As shown in Fig. 3g, v8 has only
two 0.7-neighbors and thus it will be pruned. After all the
WeakCore are visited, the StrongCore only consists of
nodes v3 and v6.

Fig. 5a shows the 0.7-neighbors of v3 at time f2; 3; 7g. The
number on each edge is the structural similarity of the two
nodes in the corresponding time. It should be noticed that
the 0.7-neighbors of v3 at time f2; 3g are fv1; v2; v4g, but the
0.7-neighbors at time f7g are fv2; v4; v5g. By the definition of
StrongCore, we can easily verify that this result is correct
which indicates the main difference between StrongCore
and StableCore. Fig. 5b shows the 0.7-neighbors of v3 at
time f2; 3; 5g. The 0.7-neighbors of v6 in time f2; 3; 5g are all
the same. According to the definition of StableCore, v3 is
not a StableCore but v6 is. Intuitively, v3 is not stable since it
has different similar neighbors at different time.

Algorithm 4. StableCore ðG;m; t; �Þ
1 SC StrongCore ðG;m; t; �Þ; S  ;;
2 Call the stored siðu; vÞ;
3 for each u 2 SC do
4 Invoke a existing maximal frequent pattern mining

algorithm Apriori to determine whether u is a stable core;
5 if u is a stable core then
6 Add u into S;
7 return S;

Algorithm 5. TSCAN-A ðG;m; t; �Þ
1 Gc  StableCore ðG;m; t; �Þ;
2 for each node u 2 Gc do
3 for each unvisited node v 2 NðuÞ \Gc do
4 if S�ðu; vÞ � t then
5 Add an edge ðu; vÞ into Gc;
6 Mark u as a visited node;
7 C the set of connected components in Gc;
8 C  fC [u2C Nðt;�ÞðuÞjC 2 Cg; // cluster non-core nodes
9 return C;

3.2.3 Computing the Stable Core and Stable Cluster

The process of finding the StableCore can be shown at
Algorithm 4. By Lemma 2, we can treat the strong cores as
the candidates for the stable cores. For each strong core u,
we apply an existing maximal frequent pattern mining
algorithm Apriori [23] to derive whether u is a ðm; t; �Þ-stable
core.

RecallAlgorithm1, after getting theStableCore, Algorithm1
computes the connected components in Gc in line 11, and
assigns the non-core nodes to their corresponding stable clus-
ters. The process of finding the (m; t; �)-stable clusters by
StableCore can be shown at Algorithm 5. It first gets the
StableCore by Algorithm 4. Then it clusters the cores by check-
ing S�ðu; vÞ. Next it finds the connected components of the
cores and clusters the non-core nodes to identify all the
(m; t; �)-stable clusters.

Fig. 6 shows the stable core and stable cluster of the tem-
poral graph in Fig. 2 with (m ¼ 3; t ¼ 3). The enlarged nodes
are stable cores and the other nodes are structure-reachable
from it via a (t; �)-connected edge. The stable cores can be
computed by invoking Algorithm 3 to get StrongCore first
and then check whether those cores and their similar neigh-
bors are frequent in no less than t times. Fig. 6a shows that
if � ¼ 0:7, v6 is the only stable core and it forms a stable clus-
ter of fv6; v5; v7; v8g. Fig. 6b shows that if � ¼ 0:6, fv3; v6g are
stable cores and there are two stable clusters, fv3; v1; v2; v4g
and fv6; v5; v7; v8g. It should be noted that those two stable
clusters are not reachable to each other.

3.2.4 Complexity Analysis

As confirmed in our experiments, the number of strong
cores is very small, thus the TSCAN algorithm with reduc-
ing by StrongCore is very efficient in practice. We analyze
the time complexity of TSCAN-A below.

Worst Case. Let M be the time cost of the maximal fre-
quent pattern mining algorithm. At the worst case, M is
OðCt

Tm
tÞ since it need to union the edge set of size m for t

times and the total number of time sets is Ct
T .

Our Proposed Algorithm. Let jsj be the number of strong
cores. In Algorithm 1, the time cost to compute S�ðu; vÞ can
be bounded by OðmÞ by an incremental computation proce-
dure. Note that TSCAN only computes each S�ðu; vÞ once,
the total time cost for the similarity computation is Oðm0mÞ
in the worst case, where m0 � m is the number of edges in
the de-temporal graph G. It is easy to show that the time
complexity of Algorithm 3 can also be bounded by Oðm0mÞ.
In Algorithm 5, the time complexity of finding the stable
clusters can be bounded by OðmÞ. As a result, the time com-
plexity of TSCAN with reducing by StrongCore is
Oðm0mþ jsjCt

T jsj
tÞ in the worst case. Since our algorithm is

integrated with several powerful pruning rules, jsj is small

Fig. 5. StrongCore (m ¼ 3; t ¼ 3; � ¼ 0:7).

Fig. 6. StableCore and StableCluster (m ¼ 3; t ¼ 3).

QIN ET AL.: MINING STABLE COMMUNITIES IN TEMPORAL NETWORKS BY DENSITY-BASED CLUSTERING 677

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 05:55:55 UTC from IEEE Xplore.  Restrictions apply. 



and the practical performance of our algorithm is much bet-
ter than the worst-case complexity. In our experiments, we
show that our proposed algorithm is very fast in many real-
world temporal graphs, and it can be scalable to million-
sized temporal graphs.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the effectiveness and efficiency of the proposed algorithms.
To the best of our knowledge, we are the first to study the
problem of mining stable communities in temporal graphs.
We implement four different algorithms for comparison:

� PSCAN-W is a baseline algorithm which clusters a
transformed weighted de-temporal graph to find the
stable clusters. Specifically, for each edge ðu; vÞ, it
first sets the number of temporal edges between u
and v as a weight of ðu; vÞ. Then, it invokes the state-
of-the-art density-based graph clustering algorithm
(PSCAN) [18] to find the clusters in the transformed
weighted graph and the cores in PSCAN-W should
have several similar neighbors whose sum of
weights are larger than mt in this paper.

� TSCAN-B is our basic algorithm without any prun-
ing rules that uses StableCore for clustering
(Algorithm 1).

� TSCAN-A is our improved algorithm to get stable
cores with all the pruning rules in Section 3 and
then uses StableCore for density-based clustering
(Algorithm 5).

� TSCAN-S is a variant of our TSCAN algorithm that
makes use of StrongCore for density-based clustering
(replaced line 1 of Algorithm 5 byGc  StrongCore).

All algorithm are implemented in Python. All the experi-
ments are conducted on a server of Linux kernel 4.4 with
Intel Core(TM) i5-6500@3.20 GHz and 32 GB main memory.

Datasets. We use four different types of real-world tem-
poral networks in the experiments. The detailed statistics of
our datasets are summarized in Table 2.

� Chess is a temporal network where each temporal
edge represents two chess players playing a game at
time t from 1998 to 2006.

� Lkml is a temporal communication network of the
Linux kernel mailing list, where a temporal edge
ðu; v; tÞ denotes an email communication from a user
u to v at time t from 2001 to 2011.

� Enron is an email communication network between
employees of Enron from 1999 to 2003, where each
temporal edge denotes the email communication
between the employees in Enron Corp.

� DBLP is a temporal collaboration network of authors
in DBLP from 1940 to Feb. 2018.

In Table 2, dmax denotes the maximum number of tempo-
ral edges associated with a node, and jT j denotes the num-
ber of snapshots. The first three datasets are downloaded
from konect.uni-koblenz.de, and DBLP is extracted from
dblp.uni-trier.de/xml/.

Parameter Settings. Table 3 shows the parameters adopted
in the experiments and their reference values. There are
three parameters m, t, and � in our algorithm to control the
cluster quality. For the parameter m, we vary it from 2 to 8
with a default value of 5. We vary t from 2 to 8 with a
default value of 3, and vary � from 0.2 to 0.8 with a default
value of 0.5. Unless otherwise specified, the values of the
other parameters are set to their default values when vary-
ing a parameter.

Data Descriptions. The size of temporal data in real world
is growing in a rapid speed. Also, the distributions of a
wide variety of social networks approximately follow a
power law over a wide range of magnitudes. The degree in
the temporal graphs also follows the power law distribu-
tion. Fig. 7 describes those two properties of DBLP. Fig. 7a
shows that the number of nodes and edges in DBLP are
growing exponentially since the y-axis is in log scale. It also
means that the number of publications in computer science
are growing exponentially by year. Fig. 7b demonstrates
that the distributions of degree in temporal graph and de-
temporal graph follow a power law distribution. We can
find that the degree of most nodes will be no more than 300
in the de-temporal graph and 500 in the temporal graph. It
means that one researcher is very difficult to co-operate
with more than 300 people in his whole life. All the results
above are consistent with our common sense.

4.1 Effectiveness Testing

Since most existing metrics (e.g., modularity) for measuring
the cluster quality are tailored for traditional graphs, we

TABLE 2
Statistics of Datasets

Dataset jV j ¼ n jEj ¼ m0 jEj ¼ m dmax jT j Time scale

Chess 7,301 55,899 62,385 230 99 month
Lkml 26,885 159,996 328,092 14,172 96 month
Enron 86,978 297,456 499,983 4,311 48 month
DBLP 1,729,816 8,546,306 12,007,380 5,980 78 year

TABLE 3
Parameters Adopted in the Experiments

and Their Reference Values

Symbol Description Value Default Value

m number of similar neighbors 2-8 5
t number of similar timestamps 2-8 3
� degree of similarity 0.2-0.8 0.5

Fig. 7. Data descriptions of DBLP.
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introduce four goodness metrics for clusters to evaluate the
cluster quality of different clustering algorithms for tempo-
ral graphs. Those metrics are motivated by separability, den-
sity, cohesiveness and clustering coefficient which are used to
evaluate the communities in static graphs [2].

Let C be a set of clusters obtained by different algorithms.
Table 4 shows the brief introductions of the evaluation met-
rics. The full descriptions of them are as follows.

� Average Separability (AS) captures the intuition that
good communities are well-separated from the rest of
the network, meaning that they have relatively few
edges pointing from C to rest of the network: AS ,P

Ci2C½
jfðu;v;tÞ2E:u2Ci;v2Cigj
jfðu;v;tÞ2E:u2Ci;v =2 Cigj�=jCj, whereCi is a cluster in C

and it measures the ratio between the internal and
external number of temporal edges of C.

� Average Density (AD) builds on intuition that good
communities are well connected. It measures the
fraction of the temporal edges that appear between

the nodes in C: AD ,
P

Ci2C½
P

vj2Ci
dCi
ðvjÞ

jCij �=jCj, where

Ci is a cluster in C and dCi
ðvjÞ denotes the number of

temporal edges that are associated with vj in the
cluster Ci.

� Average Cohesiveness (AC) characterizes the internal
structure of the community. Intuitively, a good com-
munity should be internallywell and evenly connected,
i.e., it should be relatively hard to split a community
into two sub communities. We characterize this by the
conductance of the internal cut and adapt it into tempo-
ral graph: AC ,

P
Ci2CmaxS�Ci

fðSÞ, where fðSÞ is the
conductance of S measured in the induced temporal
subgraph by S. Intuitively, conductance measures the
ratio of edges in S that point out side the set and edges
insideS.

� Average Clustering Coefficient (ACC) is based on the
premise that network communities are manifestations
of locally inhomogeneous distributions of edges,
because pairs of nodes with common neighbors are
more likely to be connected with each other: ACC ,P

Ci2C½
P

vj2Ci

#edgeðNðvj;CiÞÞ
dCi
ðvjÞ �=jCj, where #edgeðNðvj;

CiÞÞ is the number of temporal edges in Ci whose two
end nodes are vj’s neighbors and dCi

ðvjÞ denotes the
number of temporal edges that are associated with vj
in the clusterCi.

Intuitively, a stable cluster should have high AS, AD, AC
and ACC values. It is obvious that the final clusters in
TSCAN-B and TSCAN-A are same because they both make
use of StableCore for density-based clustering. So, we do
effectiveness testing among PSCAN-W, TSCAN-S and

TSCAN-A. Unless otherwise specified, in the following
effectiveness testings, the evaluation values are normalized
so each maximum single value is 1.

Exp-1. Distributions of the Evaluation Value. We test the
goodness value of the computed clusters in every de-tempo-
ral graph Gi with i varies from 1980 to 2018 in DBLP. The
AS, AD, AC and ACC distributions of different algorithms
in DBLP under the default parameter setting are reported in
Fig. 8. Similar results can also be observed using the other
parameter settings or datasets.

As can be seen, TSCAN-A significantly outperforms two
baselines in terms of AS, AD and ACC metrics. Considering
AC metric, the differences between PSCAN-W, TSCAN-S
and TSCAN-A are not too much. This is because AC metric
finds the maximum conductance of the clusters and both
the algorithms can find a stable cluster which is not too bad.
Both TSCAN-S and TSCAN-A perform much better than
PSCAN-W. All the four goodness value are increasing by
the year because the number of papers are increasing by the
year (see Fig. 7a). It can be seen that the AS, AD and ACC
value of PSCAN-W are not stable. The reason could be that
PSCAN-W does not consider the stable similarities for clus-
tering, thus the resulting clusters may not truly reflect stable
clusters.

Exp-2. Effectiveness Results of Different Algorithms. The four
goodness results of different algorithms under the default
parameter setting are reported in Fig. 9. Similar results can
also be observed using the other parameter settings. As can be
seen, TSCAN-A significantly outperforms two baselines in
terms of both AS, AD, AC and ACC metrics. Both TSCAN-S
and TSCAN-A perform much better than PSCAN-W. The

TABLE 4
Evaluation Methods for the Communities in Temporal Graph

Metric Formulation Intuition

AS
P

Ci2C½
jfðu;v;tÞ2E:u2Ci;v2Cigj
jfðu;v;tÞ2E:u2Ci;v =2 Cigj�=jCj avgCi

( #temporal edges inside community Ci/ #temporal edges outside Ci)

AD
P

Ci2C½
P

vj2Ci
dCi
ðvjÞ

jCij �=jCj avgCi
( sum of nodes’ degrees inside community Ci / #nodes in Ci)

AC
P

Ci2CmaxS�Ci
fðSÞ maxCi

( #edges which can split community Ci)

ACC
P

Ci2C½
P

vj2Ci

#edgeðNðvj;CiÞÞ
dCi
ðvjÞ �=jCj avgCi

[avgvi2Ci
( #common neighbors of vi/ #temporal degree of vi inside Ci)]

Fig. 8. Goodness values in different snapshots of DBLP.
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reason could be that PSCAN-W does not consider the stable
similarities for clustering. We can see that the AS, AD and
ACC values in Lkml is much larger than those in the other
datasets. This is because that the average degree and the
maximum degree in Lkml are largest among the four datasets.

We also choose the tth largest value of AS, AD, AC and ACC
in all the snapshots into comparison. As can be seen in Fig. 10,
The results are similar to computing them in the whole de-
temporal graph.

Table 5 shows the multiple comparisons for effectiveness
of various algorithms with gathering the goodness values
above. In the results of LSD method, we can find that the
results of our proposed algorithms are similar, and
TSCAN-A is a little better than TSCAN-S. In the results of
Bonferroni method, the pðSigÞ value of TSCAN-A and
TSCAN-S are 1.0, so the effectiveness of those two methods
are similar. Considering the upper bound of the 95 percent
confidence interval, TSCAN-A and TSCAN-S are signifi-
cantly better than PSCAN-W. The results of Dunnett
method show that the mean difference is 21.633 with com-
paring TSCAN-S to PSCAN-W, and 26.715 with comparing
TSCAN-A to PSCAN-W. All the results above show that
both TSCAN-S, TSCAN-A perform much better than
PSCAN-W, and TSCAN-A is the best of all.

Exp-3. Results With Varying Parameters. Here we study
how the parameters affect the clustering performance of our
algorithm. Fig. 11 shows the results of TSCAN-A with vary-
ing parameters on DBLP. Similar results can also be
observed on the other datasets.

As can be seen, both AS, AD and ACC of TSCAN-A
increase with a growing m. The reason is that the number of
stably similar neighbors of a stable core increases when m

increases, and therefore the stable clusters tend to be more
cohesive as m increases. Similarly, we can see that both AS,
AD and ACC of TSCAN-A increase as t increases. This is
because the number of temporal edges associated with the

Fig. 9. Effectiveness results of various algorithms.

Fig. 10. The tth largest AS, AD, AC, and ACC of various algorithms.

TABLE 5
Multiple Comparisons for Effectiveness of Various Algorithms

Mean Difference Std Error Sig 95% Confidence Interval

Lower Bound Upper Bound

LSD PSCAN-W TSCAN-S -21.633 19.207 0.263 -59.776 16.509
TSCAN-A -26.715 19.207 0.168 -64.857 11.428

TSCAN-S PSCAN-W 21.633 19.207 0.263 -16.509 59.776
TSCAN-A -5.081 19.207 0.792 -43.224 33.061

TSCAN-A PSCAN-W 26.715 19.207 0.168 -11.428 64.857
TSCAN-S 5.081 19.207 0.792 -33.061 43.224

Bonferroni PSCAN-W TSCAN-S -21.633 19.207 0.789 -68.462 25.195
TSCAN-A -26.715 19.207 0.503 -73.544 20.114

TSCAN-S PSCAN-W 21.633 19.207 0.789 -25.195 68.462
TSCAN-A -5.081 19.207 1.000 -51.910 41.748

TSCAN-A PSCAN-W 26.715 19.207 0.503 -20.114 73.544
TSCAN-S 5.081 19.207 1.000 -41.748 51.910

Dunnett TSCAN-S PSCAN-W 21.633 19.207 0.426 -21.509 64.776
(two sides) TSCAN-A PSCAN-W 26.715 19.207 0.283 -16.428 69.858

Fig. 11. Effectiveness of TSCAN-A with varying parameters on DBLP.
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nodes in the stable clusters increases when t increases. We
can see that the AC values in different parameter settings
are not changing in a regular way. The reason is that AC cal-
culates the conductance of the most connected cluster and
there can always find one highly connected cluster in every
parameter setting.

Interestingly, as shown in Fig. 11c, ACC increases with an
increasing �, but AD decreases when � increases. The reason
could be that when � increases, the number of the stably
similar neighbors of a stable core decreases, and therefore
AD decreases. On the other hand, for a large �, the structural
similarities between a stable core and its neighbors increase
which give rise to a large ACC value.

Exp-4. Seeking Good Parameters Settings. In Exp-3, we find
that all the evaluation metrics are better if parameters m and
t increases. But AD decreases when � increases. So the
higher m; t, the better? Fig. 12 shows that the number of
cores with varying parameters. As we can see, all the num-
bers decrease sharply while parameters m; t; � increase.
Although the higher m and t can get higher evaluation val-
ues, we also need a higher number of stable nodes into con-
sideration. In the real applications, all the parameters must
be set properly according to the datasets and requirements
of the application. For example, under the default parame-
ters settings (m ¼ 5; t ¼ 3; � ¼ 0:5), one stable core in DBLP
represents a researcher co-authored with at least 5 research-
ers closely (s > 0:5, see Eq. (1)) in more than 3 years.

Exp-5. Case Study. We conduct a case study on DBLP to
compare the effectiveness of different algorithms. Figs. 13a,
13b, and 13c shows the communities of Prof. Qiang Yang
obtained by different algorithms with ðt ¼ 3;m ¼ 5; � ¼ 0:3Þ.
Fig. 13a shows stable cores in Definition 1 and all the edges in
the figure are (5,0.3)-connected edges. As desired, the result-
ing community of TSCAN-A contains the long-term collabora-
tors of Prof. Qiang Yang, indicating that our algorithm can
find stable communities in real-world applications. We look
at the research page of Prof. Qiang Yang http://home.cse.ust.
hk/
qyang/, and find that exclude Zheng Chen (he is a
closely co-author of Yang at MSRA), other researchers con-
necting to Prof. Yang in Fig. 13a are all former Ph.D students

of him. In Fig. 13b, we can see that the community of
TSCAN-S not only contains the stable community, but it also
contains some other co-authors of Prof. Qiang Yang, which do
not stably collaborate with Prof. Qiang Yang. In Fig. 13c,
PSCAN-W performs very bad, as the resulting community
involves large numbers of collaborators, so it is hard to find
the stable communities in the results of PSCAN-W. These
results above further confirm the effectiveness of the pro-
posed algorithm.

4.2 Efficiency Testing

Since TSCAN-B has no pruning techniques, we compare the
running time among PSCAN-W, TSCAN-S and TSCAN-A.
Also, we test the scalability and performance with varying
parameters among TSCAN-B, TSCAN-S and TSCAN-A.

Exp-6. Efficiency of Different Algorithms. Fig. 14 shows the
efficiency of different algorithms under the default parame-
ter setting (m ¼ 5, t ¼ 3, � ¼ 0:5). Similar results can also be
observed under the other parameter settings. From Fig. 14,
we can see that PSCAN-W is faster than TSCAN-S and
TSCAN-A on all datasets, because PSCAN-W relies on
much cheaper structural similarity and core computation
[18]. Note that although PSCAN-W is very efficient, its clus-
tering quality is much worse than those of TSCAN-S and
TSCAN-A. As desired, TSCAN-S is slightly faster than
TSCAN-A, because TSCAN-S does not need to invoke the
time-consuming frequent pattern mining algorithm to com-
pute the stable cores. Although TSCAN-A is more expensive
than the other algorithms, it is still very efficient on large
temporal graphs due to the powerful pruning techniques.
For example, on DBLP, TSCAN-A only takes around 100
seconds to compute the stable clusters. These results indi-
cate the high efficiency of the proposed algorithm.

Exp-7. Efficiency of Our Algorithms With Varying Parame-
ters. Here we study how the parameter affects the efficiency
of our algorithms. Fig. 15 shows the running time of our
algorithms with varying parameters on DBLP. As can be
seen, both TSCAN-S and TSCAN-A are much faster than
TSCAN-B. The TSCAN-B algorithm is intractable under
most parameter settings due to the high complexity of com-
puting the stable cores. These results also demonstrate the

Fig. 12. Number of cores with varying parameters on DBLP.

Fig. 13. Case study on DBLP.

Fig. 14. Efficiency of different algorithms.

Fig. 15. Efficiency of our algorithms with varying parameters.
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high pruning performance of the strong core pruning rule.
For both TSCAN-S and TSCAN-A, the running time
decreases with increasing m, t, and �. This is because the
pruning power of TSCAN-S and TSCAN-A increases as m,
t, and � increase. We can also see that the running time of
TSCAN-S and TSCAN-A are almost the same, it is because
that the StrongCore pruning technique has reduced the
graph into a quite small size, which makes it easy to per-
form frequent mining algorithm in reality. The following
experiment will demonstrate how powerful the pruning
techniques are.

Exp-8. The Number of Cores of Our Algorithms. Table 6
shows the number of cores obtained by TSCAN-S (strong
core) and TSCAN-A (stable core) on DBLP under the default
parameter setting. In the columns 2 and 3 of Table 6, the left
integer is the number of cores and the right value is the per-
centage of cores over all the nodes. As can be seen, both
TSCAN-S and TSCAN-A generate a small number of cores.
For example, on DBLP, only 1.97 and 0.99 percent nodes are
strong cores and stable cores respectively. These results con-
firm the high effectiveness of the strong pruning technique.

Exp-9. Memory Cost of TSCAN-A for Storing Similarity
Scores. Recall that TSCAN-Amaintains all the computed simi-
larity scores (siðu; vÞ and S�ðu; vÞ) in the main memory. Here
we evaluate the memory overhead of TSCAN-A for storing all
the computed similarity scores. Table 7 reports the results of
our algorithm under the default parameter setting. As can be
seen, the memory overhead of TSCAN-A is close to the graph
size and a little larger than PSCAN-W, confirming that our
algorithm is highly space-efficient in practice.

5 RELATED WORK

Temporal Graph Analysis. Our work is related to the problem
of temporal graph analysis, which has attracted much atten-
tion in recent years. Yang et al. [24] proposed an algorithm
to detect frequent changing components in temporal graph.
Huang et al. [25] investigated the minimum spanning tree
problem in temporal graphs. Gurukar et al. [26] presented a
model to identify the recurring subgraphs that have similar
sequence of information flow. Wu et al. [27] proposed an
efficient algorithm to answer the reachability and time-
based path queries on temporal graphs. Yang et al. [28] stud-
ied a problem of finding a set of diversified quasi-cliques
from a temporal graph. Wu et al. [29] proposed a temporal
k-core model based on the counts of temporal edges. Ma
et al. [30] investigated a dense subgraph problem in tempo-
ral graphs, in which the temporal edges are associated with
positive and negative weights. Qin et al. [31] proposed a
periodic clique model to mine periodic communities in a
temporal graph. To be best of our acknowledgment, our

study is the first to study the problem of mining the stable
communities in temporal graph.

Community Mining. The community detection problem in
static networks has been extensively studied in the litera-
ture. Most existing optimization-based algorithms [1], [4],
[5], [12] aims to formulate the community mining problem
as an optimization problem and then compute an optimal
solution with respect to a pre-defined objective function.
Most of these algorithms are very costly to handle large
graph data. Another line of research for community discov-
ery is to identify dense subgraphs from a graph, such as cli-
que and quasi-clique. Notable techniques for enumerating
all maximal cliques and quasi-cliques were proposed in [13]
and [14] respectively. Also, there are many clique-relaxed
models such as k-core and, k-truss [6], [7], [15] which can be
used to identify dense structures that are similar to cliques.

Density-Based Graph Clustering. The density-based cluster-
ing algorithm for graph data, termed as SCAN, was first pro-
posed in [3]. Shiokawa et al. [19] presented an improved
algorithm named SCAN++. It is based on an intuitive idea
that it is highly probable that many common neighbors exist
between a node and its two-hop-away nodes. Chang et al. [18]
proposed a further improved algorithm called PSCANwhich
can avoid unnecessary similarity computations. Wen et al.
[32] proposed an index-based SCAN algorithm. Based on a
pre-computed index, the algorithm can derive the structural
clusteringswith time complexity depending only on the result
size. An approximate solution called LinkSCANwas also pro-
posed in [17] to find overlapping clusterings.

Community in Dynamic Graph. There are a number of
studies for mining communities on dynamic networks [33].

(i). Some of them build physical models that the nodes
inside one dynamic community will share common statisti-
cal characteristics. Those dynamic communities will follow
a statistical model (such as Stochastic Block Model), but
they may not have certain structural properties (such as
degree constraint). Lin et al. [34] proposed FaceNet which is
the first probabilistic generative model for analyzing com-
munities and their evolutions. Matias et al. [35] explored sta-
tistical properties that combines a stochastic block model for
the evolution of the nodes’ groups through time. Gauvin
et al. [36] investigated the use of a latent factor decomposi-
tion technique to extract the community-activity structure
of temporal networks.

(ii). Some other researches track the common properties
of nodes or edges inside one dynamic community following
graph theory. Nodes or edges in the communities of
dynamic graph will have certain structural properties at
some timestamps. Chen et al. [37] developed an efficient
algorithm for tracking community dynamics by introducing
graph representatives. Agarwal et al. [38] studied how to

TABLE 6
Number of Cores of TSCAN-S and TSCAN-A on

DBLP

TSCAN-S TSCAN-A

Chess 57 0.78% 39 0.53%
Lkml 106 0.39% 49 0.18%
Enron 198 0.23% 183 0.21%
DBLP 34,044 1.97% 17,192 0.99%

TABLE 7
Memory Cost of TSCAN-A for Storing Similarity Scores

Graph size Memory(TSCAN-A) Memory(PSCAN-W)

Chess 2.7 MB 0.5 MB 0.4 MB
Lkml 20.1 MB 13.4 MB 10.5 MB
Enron 53.3 MB 10.3 MB 8.3 MB
DBLP 678.5 MB 695.3 MB 475.5 MB
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find dense clusters efficiently for dynamic graphs in spite of
rapid changes to the microblog streams. Li et al. [15] devised
an algorithm which can maintain the k-core in the large
dynamic graphs. Rossetti et al. [39] proposed an algorithm
for tracking the evolution of communities following an
online iterative procedure. Falkowski et al. [40] investigated
an incremental community miming algorithm based on
DBSCAN. DiTursi et al. [41] proposed a filter-and-verify
framework for dynamic community detection which prunes
the community by several structural constraints. Most com-
munity detection studies on dynamic graphs aims to find
and maintain communities that evolve over time. Unlike
these studies, our work focuses mainly on detecting stable
communities in temporal graphs.

6 CONCLUSION

In this paper, we propose a new density-based graph clus-
tering algorithm to find stable communities in temporal net-
works. Unlike traditional density-based graph clustering
problem, our problem relies on two new concepts called
�-stable similarity and ðm; t; �Þ-stable core. Based on these
concepts, we develop a novel algorithm with several power-
ful pruning techniques to efficiently compute the stable
communities in the temporal network. We conduct compre-
hensive experiments using four real-life datasets to evaluate
our algorithm, and the results confirm the effectiveness and
efficiency of the proposed algorithm.
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